Evidence for genetic control of Sonic hedgehog by Gli3 in mouse limb development
نویسندگان
چکیده
Sonic hedgehog (Shh) expression in the developing limb is associated with the zone of polarising activity (ZPA), and both are restricted to the posterior part of the limb bud. We show that the expression patterns of Shh and Gli3, a member of the Gli-family believed to function in transcriptional control, appear to be mutually exclusive in limb buds of mouse embryos. In the polydactyly mouse mutant extra toes (Xt), possessing a null mutation of Gli3, Shh is additionally expressed in the anterior region of the limb bud. The transcript of Ptc, the putative receptor for Shh protein, can be detected anteriorly as well. Other genes known to be involved in limb outgrowth and patterning, like Fibroblast growth factor (Fgf), Bone morphogenetic protein (Bmp), and Hoxd are misexpressed in relation to the ectopic Shh expression domain in Xt limb buds. This data suggest that Gli3 is a regulator of Shh expression in mouse limb development.
منابع مشابه
Preaxial polydactyly caused by Gli3 haploinsufficiency is rescued by Zic3 loss of function in mice.
Limb anomalies are important birth defects that are incompletely understood genetically and mechanistically. GLI3, a mediator of hedgehog signaling, is a genetic cause of limb malformations including pre- and postaxial polydactyly, Pallister-Hall syndrome and Greig cephalopolysyndactyly. A closely related Gli (glioma-associated oncogene homolog)-superfamily member, ZIC3, causes X-linked heterot...
متن کاملMouse hitchhiker mutants have spina bifida, dorso-ventral patterning defects and polydactyly: identification of Tulp3 as a novel negative regulator of the Sonic hedgehog pathway
The mammalian Sonic hedgehog (Shh) signalling pathway is essential for embryonic development and the patterning of multiple organs. Disruption or activation of Shh signalling leads to multiple birth defects, including holoprosencephaly, neural tube defects and polydactyly, and in adults results in tumours of the skin or central nervous system. Genetic approaches with model organisms continue to...
متن کاملT-box3 is a ciliary protein and regulates stability of the Gli3 transcription factor to control digit number.
Crucial roles for T-box3 in development are evident by severe limb malformations and other birth defects caused by T-box3 mutations in humans. Mechanisms whereby T-box3 regulates limb development are poorly understood. We discovered requirements for T-box at multiple stages of mouse limb development and distinct molecular functions in different tissue compartments. Early loss of T-box3 disrupts...
متن کاملGli3 (Xt) and formin (ld) participate in the positioning of the polarising region and control of posterior limb-bud identity.
During initiation of limb-bud outgrowth in vertebrate embryos, the polarising region (limb-bud organizer) is established upon activation of the Sonic Hedgehog (SHH) signaling molecule at the posterior limb-bud margin. Another hallmark of establishing anteroposterior limb-bud identities is the colinear activation of HoxD genes located at the 5' end of the cluster (5'HoxD genes). The unique and s...
متن کاملSimilar expression and regulation of Gli2 and Gli3 in the chick limb bud
Gli genes encode a family of zinc finger transcription factors that mediate signaling by Hedgehog proteins. We have cloned the chick Gli3 gene and studied its expression in developing chick limbs. Gli3 expression is highly similar to that of chick Gli2. Gli3 mRNA is evenly distributed in the early limb mesenchyme and subsequently downregulated in the posterior mesenchyme by the polarizing activ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mechanisms of Development
دوره 62 شماره
صفحات -
تاریخ انتشار 1997